If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+17=1193
We move all terms to the left:
6n^2+17-(1193)=0
We add all the numbers together, and all the variables
6n^2-1176=0
a = 6; b = 0; c = -1176;
Δ = b2-4ac
Δ = 02-4·6·(-1176)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-168}{2*6}=\frac{-168}{12} =-14 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+168}{2*6}=\frac{168}{12} =14 $
| x(3x-6)=(3x+4)(x-2) | | 6n^2+17=1031 | | 3-6(6-4x)=0 | | 6n^2+17=881 | | 6n^2+17=743 | | 6n^2+17=617 | | 2.v/4-10=15 | | 6*n^2+17=401 | | 6n^2+17=503 | | 5-2(8x+6)=4 | | 5z-4z-4=-7 | | 6n^2+17=311 | | 6n^2+17=233 | | ((3x+4)/7x)+5=6/x | | x-0.25x=40.5 | | 6n^2+17=167 | | 6(5p+40-16=-20 | | 6n^2+17=113 | | 5(3x-1)/2=20 | | 6n^2+17=71 | | 6n^2+17=41 | | 6*n^2+17=23 | | 5(w+3)=8(w+6) | | 5=6(q-5(-19 | | 6n^2+17=23 | | 4/5x+12=-8 | | -v(-4)=-16(4)^2+3 | | 5(3x-4)=2(5x+10) | | -5/8=5/4(r-14) | | 2p^2=-9p+56 | | 3x^2+18x-26=O | | -16(4)^2+v(4)+3=0 |